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A.1 Specimen Preparation and Experimental Parameters 

Unguided neural organoids for training (Fig. 1-3, Fig. S1) were produced using the 

STEMdiff™ Cerebral Organoid Kit (STEMCELL Technologies Catalog # 08570), following 

the guidelines provided by the manufacturer and previous studies[56]. Regionalized neural 

organoids depicted in Fig. 4-7 and Fig. S2 were produced using STEMdiff™ Dorsal Forebrain 

Organoid Differentiation Kit (STEMCELL Technologies Catalog # 08620), adhering to the 

manufacturer’s instructions and previous research methodologies[57]. For extensive 

characterization details ensuring the presented organoids correspond to reality, refer to the work 

by Wang et al.[17] and Tang et al.[20]. Cerebral Organoids of Day 19, Day 34, Day 71, and Day 

112 age and Dorsal Forebrain Organoids of Day 82 age were collected on the same day, rinsed 

twice with PBS to eliminate any leftover medium, and then fixed with 4.0% (w/v) PFA at 4°C 

overnight. 

After washing out the PFA with PBS, the samples were sequentially soaked in 10%, 

20%, 27 and 30% (w/v) sucrose solutions, then submerged in Optimal Cutting Temperature 

(OCT) compound (Tissue-Tek), and left overnight at 4°C. The tissue samples were subsequently 

frozen, and 10µm, 20µm, 30 µm, and 60µm sections were obtained via cryosectioning. For 

staining, all sectioned slices were treated with 10% normal donkey serum containing 1.0% (v/v) 

Triton X-100 (Sigma-Aldrich). The primary antibodies (β-tubulin (TuJ1), Abcam, ab18207, and 
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BioLegend, 801201; Neurofilament Heavy, MilliporeSigma, AB5539; MAP2, Abcam, ab92434 

and ab5392) were applied to the samples and left at 4°C for 3 days. The samples were then 

washed four times, each at different durations (1 min – 10 min – 10 min – 10 min). Following 

this, they were incubated with the corresponding secondary antibody (Goat Anti-Chicken IgY 

H&L, ab150169; Goat Anti-Mouse IgG H&L, ab150113; Goat Anti-Rabbit IgG H&L 488, 

ab150077 - Alexa Fluor® 488) for 2 hours at room temperature, which was then washed off in 

a similar manner with 1 min – 10 min – 1 hour – 5 hour durations. The slices were then stained 

with DAPI (Sigma-Aldrich) for 30 minutes and mounted with glycerol (Sigma-Aldrich). Finally, 

the samples were examined under a confocal microscope (Nikon) for imaging and analysis as 

shown in Fig. 1.  

For the in-silico experiment, configurations including learning rate, number of epochs, 

loss function type, optimizer, data augmentations, and learning rate scheduler are provided in 

Tab. S1 below.  

 

Random adjustments to brightness, contrast, and saturation were applied to mitigate brightness 
variability across layers, particularly in the presence of bright spots. This augmentation was 
essential, as normalization alone was insufficient to address such variations. 

 

A.2 GAN-Based Denoising for Improved Signal-to-Noise Ratio  

The generated confocal images showed dense neuron-specific Class III TuJ1 signals 

attributed to high elevations of young neurons within the neural organoids. However, the 

 
Tab. S1 Key Parameters Used in the Experimental Setup  

Learning Rate 0.0002 

Number of Epochs 1000

Types of Loss Function L1 loss

Optimizer Adam

Data Augmentations Random Rotation, Random Crop, 
Random Brightness/Contrast/Saturation

Learning Rate Scheduler Cosine Annealing



3 

abundance of these signals, combined with the thickness of the slides, led to out-of-focus layers 

projecting their secondary antibody-coupled fluorophore signal. This resulted in visually 

unappealing images and introduced a pronounced background signal, posing challenges for the 

reconstruction and analysis of individual layers.  

 

 
Fig. S1 A comprehensive comparative analysis of various image denoising methods. The figure consists 
of three sections: a visual representation at the top, (a), and (b). Columns in the top section, from left to right, 
show: 1st, raw unaltered images; 2nd, images with added noise; 3rd, images denoised using threshold 
adjustment; 4th, images denoised using non-local means; and 5th, images denoised using GAN-based 
methods. Rows, from top to bottom, represent four different samples. (a) The design of the expert evaluation 
study and pass rates for each denoising method. (b) NIQE evaluation results. Stained with anti-beta III tubulin 
primary, and a secondary antibody conjugated to 488 nm. 
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Since the primary sources of noise in confocal microscopy, including photon shot noise, 

electronic noise, and signal intensity fluctuations, typically adhere to Poisson and Gaussian 

distributions, we postulated that the raw image comprised the pure organoid image with additive 

noise: Iraw = Ipure + G1. To mitigate Gaussian noise (G1) within the raw data, we introduced 

additional Gaussian noise (G2) to the raw image. Subsequently, we employed a Generative 

Adversarial Network (GAN)-based denoising neural network to restore Iraw from Ipure + G1 + G2, 

which was trained to learn the distribution of diverse Gaussian noise. This model was then 

utilized to process Iraw and remove the Gaussian noise G1.  

Our initial step involved applying the GAN-based denoising model to the raw image, 

ensuring subsequent Embedded Neural Network (ENN) was shielded from and not influenced 

by noise. This strategic denoising step enhanced the robustness of subsequent machine learning 

applications, thereby fostering improved accuracy and reliability in image analysis and 

interpretation.  To show the efficacy of our chosen background denoising approach in enhancing 

the Signal-to-Noise Ratio of confocal images, we present a comparative analysis of various 

methods in Supplementary Figure 1 (Fig. S1).  

The first column of images displays the raw, unaltered images. In Fig. S1, discernible 

noise is evident in the initial images. The second column presents noisy images (Ipure + G1 + G2), 

showing the additive Gaussian noise. The third column employed a threshold adjustment 

denoising method[75], resulting in a significant modification of the image with increased 

contrast between light and dark regions. However, this approach adversely impacted organoid 

pixel intensity, as indicated by the white arrows in the first row of the third column. The fourth 

column introduced the non-local means denoising method from OpenCV[76], which 

demonstrated superior noise reduction compared to the threshold adjustment method. However, 

the presence of varying levels of Gaussian noise within the organoid’s diverse fibers posed a 

challenge for the hard-coded nonlocal means method, especially when closely resembling those 
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of the organoid, as indicated by the yellow arrows in the second row. Notably, the GAN-based 

denoising method not only surpassed noise reduction but also exhibited the capability to discern 

specific characteristics within the organoid image, enhancing structural clarity, as evidenced in 

the white rectangle in the fourth row.  

To provide an objective evaluation of these outcomes, considering the absence of a 

reference point in the denoised images, seven biomedical experts participated in the assessment 

of super-resolution images within a diverse dataset. This dataset encompassed images processed 

through various methods, including GAN-based denoising, non-local means denoising, noise 

suppression through threshold adjustment, and raw, unprocessed images. Fig. S1(a) presents 

statistical Pass/Fail results across different methods, as evaluated by the biomedical experts. 

Fig. S1(b) shows the statistical outcomes of various denoising methods using the NIQE. 

Notably, in Fig. S1(b), our GAN-based denoising method emerged as the most effective in 

reducing noise in organoid images, demonstrating the highest mean score. However, it is 

essential to acknowledge its difficulty in handling certain noisy images, as reflected by a 

considerable variance. 

 

A.3 Neural Network Structure of the Restorer  

As shown in the main Fig. 2, the overall structure of the Restorer begins by using multi-

scale attention to extract features from the 2D layers. This enhances feature representation and 

optimizes the neural network structure. Additionally, we incorporate an additive attention block, 

as highlighted in the main Fig. 2 and Fig. 3, to further refine the Restorer’s performance. All 

attention blocks are based on convolution layers, which makes them easier to reduce in size 

during model pruning and quantization.  

Inspired by TransUNet[77, 78], we introduced a transformer block within the UNet 

structure to enhance the pyramid-like deep reconstruction at different scales. Each level of the 
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block contains a Transformer block[79], followed by a convolution block. This attention-based 

architecture not only achieves strong performance in reconstruction but also maintains a 

relatively compact model size, suitable for deployment. 

 

A.4 Statistical Map Estimation 

Within the intricate 3D volumes of organoids, discernible spatial continuity and 

clusterability among adjacent layers are evident in the organoid structure[80, 81]. This implies 

the existence of shared structural patterns or features among neighboring layers, particularly 

when the 3D volume reflects a coherent organoid structure. This insight prompts us to consider 

using vertical interpolation as an alternative to complex 3D convolutional neural networks. To 

achieve this, we employed the Inverse Proportional Function (IPF) to estimate the weights of 

different neighboring layers while interpolating into the target layer.  

IPF assigns larger weights to nearby layers and smaller or even zero weights to layers 

distant from the target, as in the equation: 

𝑊! =
"
#
+ 𝑏 ,   (1) 

where a and b are undetermined coefficients of IPF, estimated through curve fitting; D 

represents the distance between the target layer and its neighboring layer. This approach 

simplifies the mapping process and is well-suited for confocal microscopy. When trained on a 

high-resolution 3D volume with dimensions of 2048×2048×L (L being the number of layers), 

the GPU encountered challenges in processing the entire volume directly. Moreover, neural 

networks also encountered difficulties in managing the increased artifacts resulting from the 

previous interpolation when directly inputting the interpolated images into the network.  

 We applied downsampling to interpolate 2D layer images so that the neural network 

focused on the most confident information from the neighboring layers and mitigated artifact 

retention[82-84]. Importantly, the decrease in horizontal resolution reduced the demand for 
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computation power and memory usage during the reconstruction. Consequently, we 

investigated the utilization of a compact Convolutional Neural Network (CNN) architecture to 

encode the low-resolution version of the interpolated layer within the 3D volume. The defined 

loss function is expressed as:  

,   (2) 

where Wx, x = n −2t,n − t,n + t,n +2t, are the weights calculated with IPF; n −2t, n − t, n + t, and 

n + 2t are the layer indices, and t is the sampling interval (axial resolution magnification) of 

confocal microscopy. Itarget↓ symbolizes the target image. In our experiments, we employed t = 

1,2,4 times downsampling to leave only the model’s input layers, which interpolates into the 

target layer. The CNN model enabled us to encode the layer of low-resolution version for saving 

memory and accelerating computing. Additionally, it estimates the probability of specific pixels 

appearing on the target layer, earning the designation ‘Statistical Map Estimation’ (SME) for 

the target layer. Therefore, SME extracts features from neighboring layers prior to interpolation, 

expanding the field of view and enhancing interpolation efficiency, thereby improving the 

accuracy of the reconstruction process. 

 

A.5 Neural Network Pruning and Quantization 

Even though the model had already been optimized for computation efficiency by 

encoding the 3D volume by Statistical Map Estimation (SME) in low resolution, it was still 

oversized to be deployed in the embedded environment for fast reconstruction. We continued 

to apply parameter pruning and quantization to reduce the model size and accelerate inference 

speed, thus enhancing its computational efficiency[85].  

Initially, we commenced the pruning process with a ratio of x = 21.83%, leveraging 

PyTorch’s pruning functionalities to selectively remove elements[86]. It is essential to note that 
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the model tended to overfit in the context of biomedical imaging due to a limited dataset. 

Consequently, specific pruning ratios may lead to performance improvement. To find the best 

pruning ratio (x), we progressively increased it and iterated the pruning process until there was 

no further enhancement in model performance. We selected pruning ratios ranging from 0.6 to 

0.995 to evaluate their impact on both model performance and deployment feasibility on 

resource-constrained devices, including Raspberry Pi 5. Through these experiments, we 

identified that a pruning ratio of 0.99 represents the optimal balance, as it is the first 

configuration that satisfies the Raspberry Pi's memory limitations while maintaining acceptable 

performance tradeoffs. Furthermore, while pruning inevitably leads to some loss in image 

quality, this tradeoff enables the practical application of the model in real-world scenarios where 

computational resources are limited. This rationale is critical to the framework’s design, 

focusing on maximizing performance under strict deployment requirements (Fig.2(a); Tab. S2, 

3, 4). 

We opted to reduce the input layer sizes of the model to accelerate the inference. By 

allowing the model to process smaller images, we significantly enhanced the processing speed 

compared to that of a full-sized organoid layer image. This modification involved receiving and 

predicting the 512×512 version of the organoid layer, utilizing BICUBIC interpolation to 

upscale the expected image size for display. This integration of parameter pruning and 

additional optimization was intended to balance model size and real-time processing efficacy 

in 3D organoid imaging. Herein, this refined model is referred to as a Reside-Embedded Neural 

Network (R-ENN).  

To demonstrate variations in GPU performance (Fig. 6), we modeled a warm-up phase. 

Degraded reconstruction quality was observed in the first layer at 2×, 4×, and 8× compression 

factors (Tab. S2). These factors represent the level of data compression (e.g., 2× uses 10 input 

layers, while 8× uses 3). GPU optimization with a warm-up phase improved PSNR, SSIM, 
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MSE, NRMSE, and processing time, as shown in the table below. It should be noted that Fig. 6 

in the manuscript highlights values without this phase since it better reflects general user 

behavior. 

 

 

A.6 Deployment of the Embedded Neural Network on Raspberry Pi 

We trained the neural network using our server equipped with two Nvidia A6000 GPUs. 

After pruning the model (the pruning ratio is 21.83%), we deployed the neural network on the 

Raspberry Pi 5 with 8 GB of RAM. Using the Raspberry Pi’s screen, we can directly display 

the real 3D volume of the organoid. The user can rotate, enlarge, and drag the image to different 

parts to observe details. Supplementary Figure 2 (Fig. S2) shows the display on the Raspberry 

Pi. More details are provided in the Supplementary Video Three. 

 

Tab. S2 Comparison of Reconstruction Metrics With and Without GPU Warm-Up  

Compression Factor

Methods w/ w/o w/ w/o w/ w/o
PSNR 30.8860 30.7900 29.8130 29.1220 28.1580 27.7670
SSIM 0.9624 0.9513 0.9374 0.9360 0.9273 0.9200
MSE 0.0008 0.0008 0.0011 0.0012 0.0015 0.0017
NRMSE 0.0286 0.0288 0.0323 0.0350 0.0392 0.0409
Time 14.3820 14.8110 14.3790 14.8000 14.3700 14.7670

2x 4x 8x

 
Fig. S2 Demonstration of Displaying the 3D Volume of the Organoid on an Embedded Device 
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A.7 Comparison of PLayer with Interpolation Methods and Denoising Networks for 3D 

Reconstruction 

Tab. S3 below presents a comparison of PLayer with other 3D reconstruction methods, 

evaluated using PSNR and SSIM metrics. As shown, PLayer consistently outperforms 

interpolation methods like IPF and Cubic. For example, in Sample O1 (Organoid 1), PLayer 

achieves a SSIM of 0.822 and a PSNR of 29.74, significantly higher than IPF (SSIM: 0.662, 

PSNR: 25.60)  and Cubic (SSIM: 0.575, PSNR: 23.84).  

Moreover, PLayer surpasses the pretrained Denoising UNet[5] across all samples, with 

Sample O3 showcasing PLayer’s SSIM of 0.856 and PSNR of 30.40, compared to UNet’s lower 

SSIM of 0.680 and PSNR of 25.73. The superior performance of PLayer can be attributed to 

its ability to reconstruct end-to-end from low-resolution 3D volumes to high-resolution output. 

In contrast, the original Denoising UNet is limited in its ability to effectively capture long-range 

dependencies and global context[87]. The comparisons in the table show that the reconstruction 

of PLayer better aligns with reality than its counterparts.  

 

A.8 Comparison of PLayer with Other Methods: Memory and Time Efficiency vs. 

Reconstruction Accuracy 

Tab. S4 below compares the performance of PLayer with the Vision Transformer (ViT, 

a pretrained model) and our previous LayerLink method, focusing on memory usage, time 

efficiency, and reconstruction accuracy based on average SSIM, PSNR, MSE, and NRMSE.  

 
Tab. S3 Comparison Between PLayer and Other 3D Reconstruction Methods 

Methods
          Metrics
Samples SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE

O1 (20 layers) 0.8220 29.740 0.0083 0.6620 25.597 0.0134 0.6170 24.550 0.0151 0.5750 23.841 0.0164 0.5570 23.391 0.0173
O2 (21 layers) 0.7780 29.240 0.0088 0.6720 25.387 0.0137 0.6410 24.334 0.0155 0.6430 24.829 0.0146 0.6040 23.619 0.0168
O3 (21 layers) 0.8560 30.400 0.0077 0.8000 28.397 0.0097 0.7660 27.532 0.0107 0.7520 27.277 0.0110 0.6800 25.729 0.0132
O4 (21 layers) 0.8540 31.100 0.0071 0.8290 30.932 0.0072 0.8200 30.346 0.0077 0.8160 30.448 0.0077 0.8160 30.209 0.0079
O5 (21 layers) 0.7440 30.800 0.0074 0.8160 30.377 0.0077 0.7850 29.233 0.0088 0.8030 29.538 0.0085 0.7650 28.431 0.0097

PLayer IPF GND Cubic Denoising UNet
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PLayer demonstrates clear advantages in time and memory efficiency compared to ViT. 

PLayer’s model is significantly smaller (around 5 MB) than the ViT (around 35 MB), resulting 

in faster processing times per layer, around 30 seconds for PLayer compared to approximately 

46 seconds for ViT across various samples. This efficiency is largely due to PLayer’s smaller 

parameter set and the use of pruning and quantization techniques, which reduce model 

complexity. In contrast, the ViT model consumes around 724 MB of memory on average, while 

PLayer requires about 639 MB.  

Despite PLayer’s efficiency, it achieves slightly lower accuracy than the ViT w/ 

LayerLink due to the trade-offs from pruning. For instance, in Image O4, PLayer achieves an 

SSIM of 0.82 and a PSNR of 28.77 dB, compared to ViT’s SSIM of 0.86 and PSNR of 30.66 

dB. However, the non-pruned version of PLayer is also built on a ViT-based neural network, 

and performs comparably to the ViT, as shown in Fig. 7. 

When compared to interpolation-based methods, PLayer’s performance is superior in 

terms of reconstruction accuracy. For example, in sample O1, PLayer achieves a PSNR of 26.47 

dB and an SSIM of 0.75, outperforming the interpolation method, which only achieves a PSNR 

of 21.39 dB and an SSIM of 0.61. However, interpolation methods are more time-efficient, 

taking only around 1.75 seconds per layer and requiring significantly less memory (around 155 

Tab. S4 Comparison of PLayer with Other Methods: Memory and Time Efficiency vs. Reconstruction 
Accuracy  

Methods Image ID Avg Time (s/layer) Avg SSIM Avg PSNR (dB) Avg MSE Avg NRMSE Memory Usage
O1 (512×512) 26.5281 0.7500 26.4700 0.0022 0.1860 630.66 MB
O2 (512×512) 30.2975 0.7500 26.6500 0.0022 0.1820 639.61 MB
O3 (512×512) 31.4534 0.7400 25.9500 0.0025 0.1910 637.41 MB
O4 (512×512) 30.9989 0.8200 28.7700 0.0013 0.1620 639.37 MB
O1 (512×512) 46.4001 0.8800 30.4700 0.0009 0.1480 720.41 MB
O2 (512×512) 46.7148 0.8000 29.7700 0.0010 0.1530 724.50 MB
O3 (512×512) 46.7220 0.8500 30.2300 0.0009 0.1500 724.88 MB
O4 (512×512) 44.6817 0.8600 30.6600 0.0009 0.1470 726.35 MB
O1 (512×512) 25.5454 0.6000 21.7651 0.0066 0.3290 711.05 MB
O2 (512×512) 29.6878 0.6200 22.3455 0.0058 0.3200 733.23 MB
O3 (512×512) 31.7682 0.5900 20.4551 0.0090 0.3520 722.22 MB
O4 (512×512) 33.1917 0.6700 22.9957 0.0050 0.3140 710.33 MB
O1 (512×512) 1.7500 0.6100 21.3900 0.0072 0.3300 154.82 MB
O2 (512×512) 1.9000 0.5900 21.0100 0.0079 0.3370 155.20 MB
O3 (512×512) 1.8900 0.5300 20.8100 0.0083 0.3410 154.41 MB
O4 (512×512) 1.8500 0.6100 22.3900 0.0058 0.3170 155.85 MB

PLayer 
Prunning ratio 

= 0.99

ViT (w/o LayerLink )

LayerLink 
Interpolation

ViT (w/ LayerLink )
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MB). This trade-off highlights that while interpolation is faster, PLayer offers far better 

reconstruction quality, making it the preferred choice for high-accuracy applications.  

 

A.9  High-Resolution 3D Volume of the Organoid from Confocal Microscopy 

We have made the entire 3D volume dataset available on Zenodo: 

https://zenodo.org/records/12786894. This dataset supports the study titled ‘PLayer: A Plug-

and-Play Embedded Neural System to Boost Neural Organoid 3D Reconstruction.’ It 

comprises a total of 539 high-resolution images, each with dimensions of 2048×2048 pixels. 

The image collection took place roughly over one month. Details are presented in the 

supplementary appendix A.1 Specimen Preparation and Experimental Parameters. 
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Fig. S1 A comprehensive comparative analysis of various image denoising methods. The 
figure consists of three sections: a visual representation at the top, (a), and (b). Columns in the 
top section, from left to right, show: 1st, raw unaltered images; 2nd, images with added noise; 
3rd, images denoised using threshold adjustment; 4th, images denoised using non-local means; 
and 5th, images denoised using GAN-based methods. Rows, from top to bottom, represent four 
different samples. (a) The design of the expert evaluation study and pass rates for each 
denoising method. (b) NIQE evaluation results. Stained with anti-beta III tubulin primary, and 
a secondary antibody conjugated to 488 nm. 
 
Tab. S1 Key Parameters Used in the Experimental Setup 
 
Tab. S2 Comparison of Reconstruction Metrics With and Without GPU Warm-Up 
 
Tab. S3 Comparison Between PLayer and Other 3D Reconstruction Methods 
 
Tab. S4 Comparison of PLayer with Other Methods: Memory and Time Efficiency vs. 
Reconstruction Accuracy 
 
Fig. S2 Demonstration of Displaying the 3D Volume of the Organoid on an Embedded Device 
 
Supplementary Video One 3D reconstruction 
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Supplementary Video Two The Comparison of Various Methods 
 
Supplementary Video Three The Deployment 
 


